首页> 外文OA文献 >Speaker verification from coded telephone speech using stochastic feature transformation and handset identification
【2h】

Speaker verification from coded telephone speech using stochastic feature transformation and handset identification

机译:使用随机特征转换和听筒识别功能从编码的电话语音中进行说话人验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The performance of telephone-based speaker verification systems can be severely degraded by the acoustic mismatch caused by telephone handsets. This paper proposes to combine a handset selector with stochastic feature transformation to reduce the mismatch. Specifically, a GMM-based handset selector is trained to identify the most likely handset used by the claimants, and then handset-specific stochastic feature transformations are applied to the distorted feature vectors. To overcome the non-linear distortion introduced by telephone handsets, a 2nd-order stochastic feature transformation is proposed. Estimation algorithms based on the stochastic matching technique and the EM algorithm are derived. Experimental results based on 150 speakers of the HTIMIT corpus show that the handset selector is able to identify the handsets accurately (98.3%), and that both linear and non-linear transformation reduce the error rate significantly (from 12.37% to 5.49%).
机译:基于电话的扬声器验证系统的性能可能会因电话听筒引起的声音不匹配而严重降低。本文提出将手机选择器与随机特征变换相结合以减少失配。具体而言,对基于GMM的手机选择器进行训练,以识别索赔人使用的最可能的手机,然后将手机特定的随机特征变换应用于失真的特征向量。为了克服电话听筒引入的非线性失真,提出了一种二阶随机特征变换。推导了基于随机匹配技术的估计算法和EM算法。基于HTIMIT语料库的150个说话者的实验结果表明,听筒选择器能够准确识别听筒(98.3%),并且线性和非线性变换都显着降低了错误率(从12.37%降至5.49%)。

著录项

  • 作者

    Mak, MW; Kung, SY;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号